

General Certificate of Education Advanced Level Examination June 2011

Mathematics

Unit Further Pure 2

Monday 13 June 20119.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 (a) Draw on the same Argand diagram:
(i) the locus of points for which

$$
\begin{equation*}
|z-2-5 i|=5 \tag{3marks}
\end{equation*}
$$

(ii) the locus of points for which

$$
\arg (z+2 \mathrm{i})=\frac{\pi}{4}
$$

(b) Indicate on your diagram the set of points satisfying both

$$
\begin{gather*}
|z-2-5 i| \leqslant 5 \\
\arg (z+2 i)=\frac{\pi}{4} \tag{2marks}
\end{gather*}
$$

and

2 (a) Use the definitions of $\cosh \theta$ and $\sinh \theta$ in terms of e^{θ} to show that

$$
\begin{equation*}
\cosh x \cosh y-\sinh x \sinh y=\cosh (x-y) \tag{4marks}
\end{equation*}
$$

(b) It is given that x satisfies the equation

$$
\cosh (x-\ln 2)=\sinh x
$$

(i) Show that $\tanh x=\frac{5}{7}$.
(ii) Express x in the form $\frac{1}{2} \ln a$.

3 (a) Show that

$$
\begin{equation*}
(r+1)!-(r-1)!=\left(r^{2}+r-1\right)(r-1)! \tag{2marks}
\end{equation*}
$$

(b) Hence show that

$$
\sum_{r=1}^{n}\left(r^{2}+r-1\right)(r-1)!=(n+2) n!-2
$$

4
The cubic equation

$$
z^{3}-2 z^{2}+k=0 \quad(k \neq 0)
$$

has roots α, β and γ.
(a) (i) Write down the values of $\alpha+\beta+\gamma$ and $\alpha \beta+\beta \gamma+\gamma \alpha$.
(ii) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}=4$.
(iii) Explain why $\alpha^{3}-2 \alpha^{2}+k=0$.
(iv) Show that $\alpha^{3}+\beta^{3}+\gamma^{3}=8-3 k$.
(b) Given that $\alpha^{4}+\beta^{4}+\gamma^{4}=0$:
(i) show that $k=2$;
(ii) find the value of $\alpha^{5}+\beta^{5}+\gamma^{5}$.

5 (a) The arc of the curve $y^{2}=x^{2}+8$ between the points where $x=0$ and $x=6$ is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$
S=2 \sqrt{2} \pi \int_{0}^{6} \sqrt{x^{2}+4} \mathrm{~d} x
$$

(b) By means of the substitution $x=2 \sinh \theta$, show that

$$
\begin{equation*}
S=\pi\left(24 \sqrt{5}+4 \sqrt{2} \sinh ^{-1} 3\right) \tag{8marks}
\end{equation*}
$$

6 (a) Show that

$$
\begin{equation*}
(k+1)\left(4(k+1)^{2}-1\right)=4 k^{3}+12 k^{2}+11 k+3 \tag{2marks}
\end{equation*}
$$

(b) Prove by induction that, for all integers $n \geqslant 1$,

$$
\begin{equation*}
1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{1}{3} n\left(4 n^{2}-1\right) \tag{6marks}
\end{equation*}
$$

7 (a) (i) Use de Moivre's Theorem to show that

$$
\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta
$$

and find a similar expression for $\sin 5 \theta$.
(5 marks)
(ii) Deduce that

$$
\tan 5 \theta=\frac{\tan \theta\left(5-10 \tan ^{2} \theta+\tan ^{4} \theta\right)}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}
$$

(b) Explain why $t=\tan \frac{\pi}{5}$ is a root of the equation

$$
t^{4}-10 t^{2}+5=0
$$

and write down the three other roots of this equation in trigonometrical form.
(3 marks)
(c) Deduce that

$$
\tan \frac{\pi}{5} \tan \frac{2 \pi}{5}=\sqrt{5}
$$

END OF QUESTIONS

