

General Certificate of Education Advanced Level Examination June 2011

Mathematics

MFP2

Unit Further Pure 2

Monday 13 June 2011 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

- **1 (a)** Draw on the same Argand diagram:
 - (i) the locus of points for which

$$|z - 2 - 5i| = 5$$
 (3 marks)

(ii) the locus of points for which

$$\arg(z+2i) = \frac{\pi}{4}$$
 (3 marks)

(b) Indicate on your diagram the set of points satisfying both

and
$$|z-2-5i| \leq 5$$

 $\arg(z+2i) = \frac{\pi}{4}$ (2 marks)

2 (a) Use the definitions of $\cosh \theta$ and $\sinh \theta$ in terms of e^{θ} to show that

$$\cosh x \cosh y - \sinh x \sinh y = \cosh(x - y)$$
 (4 marks)

(b) It is given that x satisfies the equation

 $\cosh(x - \ln 2) = \sinh x$

- (i) Show that $\tanh x = \frac{5}{7}$. (4 marks)
- (ii) Express x in the form $\frac{1}{2} \ln a$. (2 marks)

3 (a) Show that

 $(r+1)! - (r-1)! = (r^2 + r - 1)(r - 1)!$ (2 marks)

(b) Hence show that

$$\sum_{r=1}^{n} (r^2 + r - 1)(r - 1)! = (n + 2)n! - 2 \qquad (4 \text{ marks})$$

 $z^3 - 2z^2 + k = 0$ $(k \neq 0)$ has roots α , β and γ . Write down the values of $\alpha + \beta + \gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$. (a) (i) (2 marks) (ii) Show that $\alpha^2 + \beta^2 + \gamma^2 = 4$. (2 marks) (iii) Explain why $\alpha^3 - 2\alpha^2 + k = 0$. (1 mark) (iv) Show that $\alpha^3 + \beta^3 + \gamma^3 = 8 - 3k$. (2 marks) Given that $\alpha^4 + \beta^4 + \gamma^4 = 0$: (b) (i) show that k = 2; (4 marks) (ii) find the value of $\alpha^5 + \beta^5 + \gamma^5$. (3 marks)

5 (a) The arc of the curve $y^2 = x^2 + 8$ between the points where x = 0 and x = 6 is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$S = 2\sqrt{2}\pi \int_0^6 \sqrt{x^2 + 4} \,\mathrm{d}x \qquad (5 \text{ marks})$$

(b) By means of the substitution $x = 2 \sinh \theta$, show that

$$S = \pi (24\sqrt{5} + 4\sqrt{2}\sinh^{-1}3)$$
 (8 marks)

6 (a) Show that

4

The cubic equation

$$(k+1)(4(k+1)^2 - 1) = 4k^3 + 12k^2 + 11k + 3$$
 (2 marks)

(b) Prove by induction that, for all integers $n \ge 1$,

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{1}{3}n(4n^{2} - 1)$$
 (6 marks)

Turn over 🕨

7 (a) (i) Use de Moivre's Theorem to show that

$$\cos 5\theta = \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta$$

imilar expression for $\sin 5\theta$. (5 marks)

and find a similar expression for $\sin 5\theta$.

(ii) Deduce that

$$\tan 5\theta = \frac{\tan \theta (5 - 10 \tan^2 \theta + \tan^4 \theta)}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}$$
(3 marks)

Explain why $t = \tan \frac{\pi}{5}$ is a root of the equation (b)

$$t^4 - 10t^2 + 5 = 0$$

and write down the three other roots of this equation in trigonometrical form.

(3 marks)

(c) Deduce that

$$\tan\frac{\pi}{5}\tan\frac{2\pi}{5} = \sqrt{5} \tag{5 marks}$$

END OF QUESTIONS

Copyright © 2011 AQA and its licensors. All rights reserved.

